Assessment of Optimized Electrode Configuration for Electrical Impedance Myography Using Genetic Algorithm via Finite Element Model

نویسندگان

  • Somen Baidya
  • Mohammad A Ahad
چکیده

Electrical Impedance Myography (EIM) is a noninvasive neurophysiologic technique to diagnose muscle health. Besides muscle properties, the EIM measurements vary significantly with the change of some other anatomic and nonanatomic factors such as skin fat thickness, shape and thickness of muscle, and electrode size and spacing due to its noninvasive nature of measurement. In this study, genetic algorithm was applied along with finite element model of EIM as an optimization tool in order to figure out an optimized EIM electrode setup, which is less affected by these factors, specifically muscle thickness variation, but does not compromise EIM's ability to detect muscle diseases. The results obtained suggest that a particular arrangement of electrodes and minimization of electrode surface area to its practical limit can overcome the effect of undesired factors on EIM parameters to a larger extent.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impedance bandwidth optimization of double slots circular patch antenna using genetic algorithm and the Interface Fuzzy Logic

A modified circular patch antenna design has been proposed in this paper, the bandwidth of this antenna is optimized using the genetic algorithm (GA) based on fuzzy decision-making. This design is simulated with HP HFSS Program that based on finite element method. This method is employed for analysis at the frequency band of 1.4 GHz- 2.6 GHz. It gives good impedance bandwidth of the order o...

متن کامل

Guidelines to electrode positioning for human and animal electrical impedance myography research

The positioning of electrodes in electrical impedance myography (EIM) is critical for accurately assessing disease progression and effectiveness of treatment. In human and animal trials for neuromuscular disorders, inconsistent electrode positioning adds errors to the muscle impedance. Despite its importance, how the reproducibility of resistance and reactance, the two parameters that define EI...

متن کامل

Design Optimization of Axial Flux Surface Mounted Permanent Magnet Brushless DC Motor For Electrical Vehicle Based on Genetic Algorithm

This paper presents the design optimization of axial flux surface mounted Permanent Magnet Brushless DC motor based on genetic algorithm for an electrical vehicle application. The rating of the motor calculated form vehicle dynamics is 250 W, 150 rpm. The axial flux surface mounted Permanent Magnet Brushless DC (PMBLDC) motor was designed to fit in the rim of the wheel. There are several design...

متن کامل

A Multi Objective Genetic Algorithm (MOGA) for Optimizing Thermal and Electrical Distribution in Tumor Ablation by Irreversible Electroporation

Background: Irreversible electroporation (IRE) is a novel tumor ablation technique. IRE is associated with high electrical fields and is often reported in conjunction with thermal damage caused by Joule heating. For good response to surgery it is crucial to produce minimum thermal damage in both tumoral and healthy tissues named Non-Thermal Irreversible Electroporation(NTIRE). Non-thermal irrev...

متن کامل

A Reconfigurable Electrode Array for Use in Rotational Electrical Impedance Myography

This thesis describes the design of a novel handheld electrode probe and measurement system for use in rotational electrical impedance myography (EIM), which is a method for diagnosing neuromuscular disease. The probe can be controlled from a PC via USB and uses an array of small electrode cells that can be connected together into larger electrodes with the help of crosspoint switches. A measur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016